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EXECUTIVE SUMMARY 

The quasi-static antenna design algorithm uses multipole basis function to model the general thick 
top load. A sequence of solutions converge in shape and Q. The absolute minimum Q-factor, 1.825, 
is obtained for a thick disk top load enclosed by a sphere. This is significantly smaller than the thin 
disk top load Q-factor 2.349 and previously derived thick-disk Q-factor 2.078. An analytic potential 
is derived for each multipole basis function. The capacitance and effective height is calculated from 
the potentials on the enclosing sphere. The impedance is computed with Computer Simulation 
Technology (CST) Microwave Studio. The impedance data is numerically fit to a dipole eigenmode 
equivalent circuit. The radiation resistance does not fit the expected 2  frequency dependence 
(effective height).  

The error is an  4   term that is explained by a capacitor approximated for the octupole eigenmode 
equivalent circuit.  The quasi-static antenna design algorithm predicts the DC capacitance and the 
dipole eigenmode effective height.  The octupole eigenmode increases the radiation resistance. The 
Q-factor, 1.77, is lower than expected.  These results are compared to the spherical cap top load. The 
existence of an 4  limits the accuracy of the theoretical limits in the Q values for antennas. 
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1. INTRODUCTION 

Electrically small antennas are common to portable electronics devices, personal digital assistants 
(PDAs), cell phones, etc. These antennas are small compared to wavelength or electrical small 
antennas. Designing electrically small antennas is an art; they normally have a low radiation 
resistance, a large reactance, and a small bandwidth. Additional matching components are required to 
eliminate the reactance and increase the resistance. The objective of this work is to increase the 
radiation resistance, decrease reactance, and maximize the bandwidth. The quasi-static antenna 
design algorithm is more science than art. 

L. J. Chu [1] derived a lower limit for the Q, for electrically small antennas. Chu's Q calculation 
is based on the radiated energy and the stored energy outside a sphere enclosing the antenna; the 
energy inside the sphere is assumed to be zero. H. L. Thal [2] refined this limit by assuming the 
antenna current is limited to the surface of the enclosing surface. The folded spherical helix design by 
S. R. Best [3] meets Thal's limit for TM10 . M. Gustafsson, C. Sohl, and G. Kristensson [4] derived a Q  
limit based on the optical theorem. A. D. Yaghjian and H. Stuart [5] derived a more restrictive limit on Q . 

The energy inside the sphere limits the antenna performance. The thin disk-loaded monopole is a 
leaky capacitor with a large amount of stored energy inside the sphere. The electric field under the 
disk is larger than the field above the disk. The quasi-static antenna design algorithm [6, 7] 
analytically computed a thick disk-loaded dipole. The thick disk-loaded dipole reduces stored energy
and Q by filling some of the spherical volume with conductor. The electric field under the top load is 
still larger than the field above the top load. This paper shows how to reduce the electric field under 
the top load and increases the radiation resistance of the antenna [8]. The antenna shape shifts to 
eliminate the gap (and the energy) between the top of the antenna and the enclosing sphere. The 
stored energy inside the enclosing sphere is limited to the region between the antenna and the ground. 

Electrically small antennas have electric fields much larger than the magnetic fields below the 
antenna resonance. The Asymptotic Conical Dipole (ACD) [9, 10, 11] was the first antenna design 
with quasi-static methods. In electrostatics, a perfect conductor is the same as an equipotential 
surface. A line of constant charge on the z-axis, with an image, will generate the ACD antenna 
design. Each ACD antenna has a different height. The quasi-static antenna design algorithm [7] fixes 
the antenna height to a constant a  and the length of the line charge a  is varied; the antenna fits 
within an enclosing sphere with a radius .a  The parameter   is a dimensionless. The Q  is 
calculated from 

 
,1

RadCR
Q


      (1)

where RRad  is radiation resistance, C  is capacitance, and   is angular frequency. The quantities 
RadR  and C  are functions of .  The radiation resistance is calculated from the effective height. The 

capacitance is calculated from the charge on the antenna arm and the maximum potential on the 
spherical enclosing surface with a radius .a   
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The above equation for Q  is valid below resonance and it gives only the first term in Chu's 
equation: 

 
 

,11
3 kaka

Q        (2)

where  /2k  and a  is the radius of the enclosing sphere. The ACD design is extended by adding 
a disk-shaped charge distribution as a load on the line charge [7]. A disk in free space is used as the 
charge distribution. The disk charge distribution is symmetric. The electric fields between the disks 
and image will be larger than the electric fields above the disk. There is no requirement for the disk 
charge distribution to be symmetric. Adding a dipole moment moves the charge from the bottom of 
the disk to the top of the disk. This reduces the electric field between the disks. A series of multipole 
charge distributions can be added to the disk to model the general charge distribution on the disk. 

Sections 2 and 3 are not needed to understand the results given in Sections 4 and 5. Section 2 
shows how the potential and top load capacitance is computed from electrostatic solutions in oblate 
spheroidal coordinates. Each solution represents a unique multipole moment with an unique 
potential. Only the rotationally symmetric top-load multipole modes will be used in this model. The 
nth  multipole falls off as 1

1
nr

 in the far field. The potential for the dipole multipole term and high 
odd moments add in the far field. The monopole and higher even moments cancel in the far fields. 
All of the multipole make a unique and diminishing contribution to the near fields. 

The perfect conductor boundary condition, ,0|| E  requires the charge distribution to be enclosed 
by the antenna surface. Only a subset of the charge distributions satisfies this boundary condition. The 
multipole moments have negative potentials, which can cause the equipotential surface to terminate 
on the disk or feed wire. This requires an additional step in the solution process; the equipotential 
surface is sampled to verify that the charge is enclosed by the equipotential surface. The final 
solution must be verified with a detailed calculation of the antenna shape. In Section 3, the effective 
height is calculated. The effective height calculation with dipole moment top load is non-trivial. The 
effective height cannot be calculated with the conventional formula [8]. The effective height is 
calculated indirectly from the potential on the enclosing sphere. 

In Section 4, a sequence of multipole basis functions are used to design minimum Q antennas. The 
antenna designs appear to converge in both shape and .Q  The final antenna design fills the top of the 
sphere; the area under the antenna is the only region with electric fields that contributes to stored 
energy inside the enclosing sphere. The electric field on the surface of the antenna is plotted. The 
electric field under the antenna is reduced by adding multipole moments. The final antenna also has 
an almost horizontal lower surface. 

In Section 5, Computer Simulation Technology (CST) Microwave Studio is used to calculate the 
impedance and Q  for a 1-m high antenna with a 1-cm-diameter hollow feed line. The impedance is 
calculated with a sequence of energy-based adaptive iterations. L. J. Chu [1]; H. D. Foltz, J. S. 
McLean, and L. Bodner [12]; and H. R. Stuart [13] used a series L , C  with a resistor, 0R , parallel 

to the inductor to model both the reactance and 2  dependence radiation resistance. The model 
represents the dipole eigenmode. The least squares fit to the CST impedance is a good fit to the 
reactance. The radiation resistance has an obvious error. The radiation resistance has an 2  and 4  
frequency-dependence terms; the coefficients are calculated with a least square fit. The 2  



3 

contribution gives the same effective height as the quasi-static antenna design algorithm. The 4  
frequency-dependence term is the source of the error in the circuit model. 

The next eigenmode, the octupole, is a circuit connected in parallel with the first eigenmode model 
[13]. The octupole (and higher) equivalent circuits reduces to a capacitor at low frequencies. This 
capacitance combined with dipole eigenmode circuit gives an anti-resonance. The dipole and octupole 
eigenmode currents interfere with each other to create a high impedance at anti-resonance. The 
anti-resonance does not have a deep physical meaning. The combined dipole eigenmode model and 
higher eigenmode capacitance significantly improve the numerical fit to the CST impedance data. 
The capacitance value was calculated from the anti-resonance frequency; the other circuit elements 
L , C , and R0 , were unchanged. The improved fit to the radiation resistance data is attributed to a 

4  frequency-dependant term introduced by the parallel capacitance. The simple equivalent circuit 
for the octupole does include any radiation resistance. The higher radiation resistance reduces the Q -
factor below the value predicted by the quasi-static antenna design algorithm. The extra capacitance 
introduced by the feed line is estimated. The quasi-static antenna design algorithm gives both the DC 
capacitance and the 2  dipole radiation resistance. 

In Section 6, CST is also used to calculate the impedance of the spherical top-loaded monopole. 
The same feed wire was used for the 1-m spherical top-loaded monopole. The data is fit to the same 
dipole eigenmode with a capacitor approximation of higher eigenmodes. The capacitance of the top-
load is larger than the above design. The effective height is smaller. The Q-factor is lower than the 
result obtained by A. R. Lopez [14]. Electrostatic data is not available to compare to the circuit results. 

Section 7 is the conclusion. The quasi-static antenna design algorithm gives a solution very close 
to the spherical capped monopole (the top-loaded design with the lowest Q ). The algorithm does not 
model all possible antenna shapes. The algorithm does not allow the bottom surface of the antenna to 
be above the source charge on the disk. A thick spherical cap top-load antenna could have a lower .Q  
The quasi-static antenna design algorithm produces a very good antenna design with modest effort. 
Other designs can be computed with a significantly higher radiation resistance and a slightly larger 
Q. The algorithm can be adapted to other enclosing surfaces. 
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2. CAPACITANCE FOR THE OBLATE SPHEROIDAL ANTENNA 

The detailed discussion of the algorithm is given in Reference [7]. This discussion is the more 
general case. The capacitance of the general thick top load is calculated from the potential on 
enclosing surface  CVq  . The potential is calculated from an analytic solution to the electrostatic 
equations. The top of the hollow feed line has a height a  and  q1  charge; the potential [15, 16]  
is 

     
   ,

11
11ln

4
1),(

0












im

imACD

a

q
z





 (3) 

where 
tf RR

a
m    is for the monopole, 

bf RR
a

i    is for the image monopole,   22   azRt
 is 

the distance from  , z  to the top of the monopole, 22  zRf
 is the distance from z,  to the 

feed point, and   22   azRb
 is the distance from ,  z to the bottom of the image monopole. The 

parameter   is the fraction of the total charge q  on the antenna top load. The superscript indicates 
an ACD stem. The parameter   is dimensionless and .10    

The disk also has the height a , a disk radius of ,a  and a net charge q  where the parameter   

is dimensionless and has the range of values 210   . G. Arfken [17, pp. 599-601 and 596] 
gives the general solution to potential on the disk   .0,,2  vu  The potential on the disk is a 
linear combination of multipole moments   imm

nn evPuK cos)(  where v  and u  are defined by the 
oblate spheroidal coordinate system: 

 ),cos()sinh( vuaz   (4)

 ),cos()sin()cosh(  vuax   (5)

 ),sin()sin()cosh(  vuay   (6)

where the a  is the disk radius.. The antenna problem will be simplified by assuming rotational 
symmetry where :)cos()cosh( vua   

     ,cos)(,,
00




 imm

nnn
nm

nm

mn

evPuK
b

vu 








  (7)
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The rotational symmetry in   requires 0mnb  for 0m  and the associated Legendre 

Polynomials reduce to Legendre Polynomials,    vPvP nn coscos0  . The n/1  is added for 
numerical convenience. The )(uKn  functions are as follows: 

   ),harccot(sinsinh0 uuK   (8)

 )),h(arccot(sin)sinh(1)(sinh1 uuuK   (9)

     ,2/)sinh(3))h(arccot(sin)1).(sinh3(sinh 2
2 uuuuK   (10)

and 

  .
6
1

2
1)(sinh

2
3

3
5)sinh(arccot)sinh(

2
3)(sinh

2
5)(sinh 23

3 





 






  uuuuuK  (11)

The general case is 

     ),(1  iQiK n
n

n
  (12)

where 

            
    ...

13
5212arccot)( 31 







   iP
n
niP

n
niPiiQ nnnn  (13)

The function Kn  at large distance is calculated by expanding  )sinh(/1tan))(cot( uausnha  in a 

power series of 
)sinh(

1

u
. After simplifying, the leading term is 

 

 
(14)

 
,2>>for    

)(sinh
1

3
2

21 u
u

K   (15)

 

 
(16)

and  

 

 
(17)
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since zua )sinh( , the above equations reduce to ,z
a    ,2

3
2

z
a    ,3

15
2

z
a  and   .4

35
2

z
a  This is the 

expected multipole expansion of the field on the z-axis. Figure 1 plots Kn  as a function of );sinh(u  
this shows the 1

1
nz

 dependence. The factor n
1  is included in Equation 7 to eliminate the n  

dependence in the far field. The value of a
qb

0400 
  is calculated from the solution of the disk in free 

space )harccot(sin)(
04 uuV a
q


 , where q  is the net charge on the disk. The only restrictions 

placed on the values of nmb  is the charge distribution must be enclosed within an equipotential 
surface. 

 
Figure 1. First four top-load radial multipole basis function. 

The combined potential is 

      ,,,),(, bb
BotDisk

tt
TopDiskACD vuvuzz    (18)

where the variables ut , v t , and ub , v b  are defined from 

 ),cos()sinh( tt vuaaz    (19)

 ),sin()cosh( tt vua   (20)

 ),cos()sinh( bb vuaaz    (21)

 ).sin()cosh( bb vua   (22)
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The capacitance is calculated from the maximum value of  ,z  on the sphere cosaz   and 
 sina : 

    2/0  wheresin,cosmax   aaMax  (23)

and 

 
.

Max

qC


  (24)

In the above coordinate systems, 0tv  and 0bv  are defined in the z  direction. The charge 

distribution that generates the term  bb
BotDisk vu ,  is the mirror image of the charge distribution for 

 tt
TopDisk vu , : 

    tntnn
n

n
tt

TopDisk vPuKbvu cos)(,
0 





  (25)

and 

      bnbnn
nn

n
bb

BotDisk vPuKbvu cos)(1,
0 
 





. (26)

The sign on  bnbn
b vPuKn

n cos)(


 follows from  bn vP cos , being even or odd relative to 2/v . 

The dipole term is the simplest example to understand:  tt vPuK cos)( 11  has positive charge on the 
top of the disk and  bb vPuK cos)( 11  has positive charge on the top of the image disk (top is +z 
direction for both disks). Both terms have a negative charge on the bottom of the disk and image 
disk. The combined terms 

    bbtt vPuKvPuK cos)(cos)( 1111   (27)

are odd about .0z  For the case 01 b , the dipole moment of the antenna is increased and the 
electric field under the antenna is decreased (with the other parameters unchanged). In the general 
case, when n  is odd, the terms 

     nvPuKvPuK bnbntntn  oddfor  cos)(cos)(   (28)

increase the thn  moment. When n  is even, the terms 

     nvPuKvPuK bnbntntn even for  cos)(cos)(   (29)

subtract in the far field the first contributing far-field moment is the  thn 1 moment. Each term has 
a unique contribution to the electric field under the antenna. 

The next step is to compute the radiation resistance. 
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3. GENERAL CALCULATION OF RADIATION RESISTANCE 

The effective height for a rotationally symmetric charge distribution is 

 
.2),(1 22

00
dzdzzq

q
h

zaaz

z
Net

Eff 










  (30)

From a previous paper [6, 7], this simplifies to 

   .1
2

 aahEff   (31)

How to apply the above effective height calculation to the dipole term  vPuK cos)( 11  is not 
obvious. The  vPuK cos)( 11  term is discontinuous at .0u  The function is odd about 2/v  or 

    vPKvPK  cos)0(cos)0( 1111 . The dipole term would give zero for a thin disk with no net 
charge. The above equation is only valid for even potentials on the disk (monopoles, quadrupoles, 
etc.). 

To derive the general case, the dipole moment used as the starting point is 

 
.2),(

22

0
dzdzzq

zaaz

azz 










p  (32)

The potential outside (and on) the sphere can be represented as a sum of spherical harmonics: 

 
    ,  cos,

1

0
1

arforP
r
ar n

n

n
n












   (33)

where 2
10apz   and 22 pzr   with all of the charge enclosed in a sphere of radius a . The 

dipole moment is computed from the potentials, 

     .sincos,
2
3

10

2 



dPaaz 




p  (34)

This term is independent of the charge distribution. The effective height is 

 
.

2
1

z
Net

Eff q
h p  (35)
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4. GENERAL OBLATE SPHEROIDAL ANTENNA 

In the calculation for the thin disk-loaded monopole, the feed line is neglected. The capacitance 
calculation assumes all of the charge is on the top load disk. This model includes a hollow feed line. 
The Matlab® calculation of the Oblate Spheroidal Antenna (OSA) assumes that %99  of the charge is 
on the top load and a token %1  of the charge is on the feed line: 99.0  and   01.01  . As 

shown in Figure 2, the antenna designs appear to converge in shape and Q . 

 
Figure 2. A sequence of antenna designs with one to five load multipoles. 

Figure 3 shows a detailed plot of the antenna surface near the sphere. Spherical coordinates 
22  zr  are used for the vertical axis and )/arcsin( r   is used for the horizontal axis. As 

basis functions are added the antenna design, the shape approaches the surface of the enclosing 
sphere. Figure 3 shows that adding extra multipole moments has a diminishing impact on the  
Q-factor. The multipole moments fall off as 1/1 nr ; they have diminishing impact on the electric field 
outside the sphere and under the antenna. The electric field is calculated from the potential and 
plotted in Figure 4. 

The vertical scale is electric field magnitude plotted as a function of distance along the surface 
measured from the top of the antenna, 1z  and 0 . The spike in the electric field is at the 
transition from almost spherical surface to the underside of the antenna. For the solution with five 
multipoles, this transition is very sharp. The electric field under the antenna is reduced by the dipole 
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moment term. Figure 4 shows that the position of the spike moves to the right as multipoles are 
added. This increases the surface area of the top surface of the antenna and the total charge on the top 
of the antenna. 

 
Figure 3. The antenna shape near the enclosing surface. 

 
Figure 4. Electric field calculated as a function of distance from the antenna top. 
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5. SECTION CST MODEL OF OBLATE SPHERICAL ANTENNA 

Computer Simulation Technology (CST) Microwave Studio was used to model the antenna. An 
accurate model for the energy is critical for Q  calculations. CST includes an energy-based adaptive 
meshing that increases the mesh resolution in areas of high-energy density. A sequence of adaptive 
meshing models were run to refine the starting mesh for the next model1. A 4.3-ohm cylindrically 
edge port was used at the hollow feed point and the excitation frequency range was from 15 to 25 MHz;  
this reduces the energy reflected at the input to the antenna2. The hollow feed line was modeled independ- 
ently to determine the required meshing. The convergence in the solutions is evaluated by looking  
at the largest difference between previous and current S11 . In the final run, this difference is 3.4e-4.  
The process was time consuming, but it eliminated the risk of using too fine a mesh and introducing 
numerical errors in the solution.  

The antenna capacitance and effective height can be extracted from the CST impedance data 
( 5.0 ) with a MatLab program. The MatLab program calculated the least square best fit to 
Stuart's eigenmode impedance circuit model, Figure 5 and Table 1. The fit to the reactance was very 
good but the radiation resistance has a large error. An additional octupole eigenmode can be modeled 
at low frequencies as a parallel capacitor OPOSAC   where the subscript indicates octupole plus higher 
order eigenmodes (the inductors short the other circuit elements at low frequencies). This extra 
capacitance adds an antiresonance to the single eigenmode impedance. Another CST model was run 
to calculate the antiresonance frequency, 90.916 MHz. The value of OPOSAC   was calculated based on 
this frequency and the previously calculated values of 0R , C , and L .  

 
    Figure 5. The equivalent circuit for the first and second eigenmode approximation. 

Figure 6 shows the CST impedance and the two eigenmodes circuit approximation. The difference 
is so small it is plotted in Figure 7. The circuit parameters are in Table 1. The CST

DCC  capacitance is 

 .032.95  OPOSA
CST
OSA

CST
DC CCC  (36)

 

                                                            

1Shrikrishna Hegde at Sonnent Software provided insight into energy adaptation and meshing. 
2James Whillhite at Sonnent Software suggested matching the a source resistance to the antenna 

and using a narrow frequency range to maximize the energy delivered to the antenna. 
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Table 1. Least square best fit to Stuart's eigenmode impedance circuit model. 

Parameters Eigenmode 1 Eigenmode 1 & 2 QSADA 

C OSA  90.2683 pF 90.2683 pF 90.364 pF 

L OSA  0.6758598 µH 0.6758598 µH N/A 

R OSA 0  1.96632 KΩ  1.96632 KΩ  N/A 

f RES  20.39706 MHz 20.39705 MHz N/A 

h Eff  N/A 0.7063 0.7108 

C +OPOSA  N/A 4.7638 pF N/A 

f nceAntiresona  N/A 90.916 MHz N/A 

Q-factor N/A 1.77 1.82 

The impact of the finite diameter feed line can be estimated. The current on the feed line is almost 
constant; almost all of the charge flows onto the top load. A reasonable approximation for the charge 
distribution on the feed line is a triangular distribution. The net charge on the feed line is 1/2 the 
monopole charge (constant charge distribution for electrical small monopole). The capacitance of a 
monopole 0.587-m high is 6.2 pF. The feed-line capacitance is about 3.1 pF. The quasi-static antenna 
design algorithm (QSADA) assumes 1% of the total charge is on the feed line or the feed line 
capacitance is 0.9 pF ( )pF 364.9001.0 ∗= . This difference is 2.2=StemC  pF. The difference 
between the two calculations is about 2.4 pF or about 2.6%: 

 .6.92=+= StemQS
OSA

QS
DC CCC  (37) 

The resistance has two components, 2ω  and 4ω  terms 

 ( ) ( ) ,// 4
2

2
1 rrOSA bbR ωωωω +=  (38) 

where rω  is the angular resonant frequency, 6465.31 =b  and .4575.02 =b  Figure 8 shows the 
curve fit. The effective height in Table 1 is calculated from the 2ω  term in the radiation resistance; it 
agrees with the quasi-static antenna design algorithm. The radiation resistance circuit element is not 
included in the octupole eigenmode circuit model. The 4ω  term is caused by a circulating current in 
the parallel CL  circuit. This current is higher than the current in the dipole eigenmode equivalent 
circuit. The antenna Q will be lower than predicted by the quasi-static antenna design algorithm.  

The Q, Figure 9, was calculated using the Yaghijian and Best [18] result:  

 
.||

2

22







 ++






=

ωωω
ω

d
dXX

d
dR

R
Q  (39) 
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Figure 10 shows the  3kaQ  “Q-factor” for the antenna that was calculated from a two-eigenmode 
circuit approximation. The Q curves are calculated numerically from the fit data. The minimum  
Q-factor is 1.77. 

 
Figure 6. CST data and equivalent circuit model. 

 
Figure 7. Error in eigenmode model. Typical error is a few milliohms. 
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Figure 8. 2 and 4  contribution to resistance. 

 

 
Figure 9. Q for the minimum Q OSA design. 
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Figure 10. Q-factor for the minimum Q OSA design. 
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6. CST MODEL OF A SPHERICAL TOP LOAD 

The same method was used to model a spherical top load. The spherical top load is a much harder 
problem. The edge of the spherical top load will have a much higher field than the above solution; 
this requires a higher resolution near the edge of the spherical top load. If the edge thickness was set 
too small, CST will not accurately model the field. The shell thickness is 0.83-cm; the horizontal 
edge is 1 cm and the height of the edge is 0.560 m. (The exact minimum is at 0.556.) The feed wire is 
the same as in the above CST model. The same eigenmode circuit model was used to fit the 
impedance. The circuit parameters are listed in Table 2. In this case, the capacitance and effective 
height are not known. Alfred R. Lopez [14] published a Q-factor of   .75.13 kaQ  

The same Matlab program was used to numerically fit the data to a two-eigenmode model, Table 2 
and Figure 11. Figure 12 shows the magnitude of the error is 0013.0  . If the least squares fit was 
expanded to include the variable OPC , the error would be smaller. The spherical top load has a 

larger surface area and a smaller charge density larger than the above antenna. The potential on the 
spherical top load will be smaller. The DC capacitance is 8% larger than the above antenna. The 
effective height is 5% smaller than the above antenna. A thinner spherical shell will have less charge 
on the edge and a higher charge density on the sphere. The higher charge density increases the 
potential on the sphere; this decreases the capacitance. Moving the edge charge to a higher position 
increases the effective height. Stuart [19] pointed out that a thicker shell has a higher Q-factor. The 
feed-line analysis is the same as above. A 1-m monopole has 9.54-pF capacitance. The feed line 
would have a capacitance around 5 pF. The CST model is reasonable accurate. 

The radiation resistance has two components, 2  and 4 : 

     ,// 4
2

2
1 rrSP ssR    (40)

where r  is the angular resonant frequency, 960684.11 s  and .28059356.02 s  Figure 13 plots 

the total radiation resistance, the 2  and 4  terms. The Q is plotted in Figure 14 and the Q-factor is 
plotted in Figure 15. 

 



20 

Table 2. Spherical top-load data fit to a two-eigenmode model. 

Parameters Eigenmode 1 Eigenmode 1 & 2 

CSP  
97.20870562 pF 97.20870562 pF 

LSP  
1.0303518 µH 1.0303518 µH 

R0 SP  
4.7281347 K  4.7281347 K  

fSP RES  
15.90688 MHz 15.90654 MHz 

hEff  
0.6649 0.6649 

COP  
N/A                          6.4012 pF

fAntires  
N/A 63.964 MHz 

FactorQ   N/A 1.70 

 

 
Figure 11. CST impedance and two eigenmode model. 
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Figure 12. Error in the two-eigenmode model. 

 

Figure 13. 2 and 4  components of resistance. 
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Figure 14. Q for spherical top load. 

 

 
Figure 15. Q-factor for spherical top load. 
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7. CONCLUSION 

The electromagnetic properties of an antenna can be described as a linear combination of 
eigenmodes. The quasi-static antenna design algorithm is a method for calculating the radiation 
resistance of the dipole eigenmode (the 2  term) and the DC capacitance of the antenna. The three-
element circuit model of the dipole eigenmode impedance does not accurately explain the impedance 
and Q. An accurate model for the impedance requires a contribution from the octupole and higher 
eigenmodes. The octupole eigenmode can be approximated with a parallel capacitor. The interaction 
of the dipole and octupole eigenmodes introduces an 4  term in the radiation resistance. The 
octupole eigenmode reduces the antenna Q below the value predicted by the quasi-static antenna 
design algorithm. The Q limits based optical theorem and a dipole excitation are valid only in the 
low-frequency limit where the octupole eigenmode does not contribute to the radiation resistance.. 

The quasi-static antenna design algorithm models a top load as a sum of multipole moments. The 
algorithm appears to converge in Q and shape. In the case of a spherical enclosure, the Q is only 
slightly larger than the minimum Q spherical cap monopole. This algorithm allows antennas to be 
designed with higher radiation resistance and a slightly higher Q [7]. With minor modifications, the 
same algorithm can be used with different enclosing surfaces. 

 

 



 

 

 

 



25 

8. REFERENCES 

1. L. J. Chu. 1948. “Physical Limitations of Omnidirectional Antennas,” Journal of Applied 
Physics, vol. 19, no. 12 (December), pp. 1163–1175. 

2. H. L. Thal. 2006. “New Radiation Q Limits for Spherical Wire Antennas,” IEEE Transitions. 
Antennas and Propagation, vol. 54, no. 10 (October), pp. 2757–2763. 

3. S. R. Best. 2004. “The Radiation Properties of Electrical Small Folder Spherical Helix 
Antennas,” IEEE Transactions Antennas and Propagation, vol. 52 (April), pp. 953–959. 

4. M. Gustafsson, C. Sohl, and G. Kristensson. 2009. “Illustrations of New Physical Bounds on 
Linearly Polarized Antennas,” IEEE Transactions on Antennas and Propagation, vol. AP-57, no. 5 
(May), pp. 1319–1327. 

5. A. D. Yaghjian and H. R. Stuart. 2010. "Lower Bonds on the Q of Electrically Small Dipole 
Antennas," IEEE Transactions on Antennas and Propagation, vol. 58, no. 10 (October). 

6. T. O. Jones III. 2012. Quasi-Static Design Approach for Minimizing the Quality Factor ' Q  ' for 
Electrical Small Antennas, U.S. Patent 8,121,821 B1 (February 21). 

7. T. O. Jones III. 2011. “A Quasi-Static Antenna Design Approach for Minimum-Q Antennas,” 
IEEE Antennas and Propagation Magazine, vol. 53, no. 3 (June). 

8. T. O. Jones III. 2013. Dipole Moment Term for an Electrically Small Antenna, U.S. Patent 
8368156 B1 (February 5). 

9. S. A. Schelkunoff and H. T. Friis. 1952. Antennas, Theory and Practice, pp. 318, Figure 10.9, 
John Wiley & Sons, Inc., New York, NY. 

10. N. C. De, T. K. Ghosh, D. R. Poddar, and S. K. Chowdhury. 1995. “Design and Experimental 
Investigation of the Asymptotic Conical Dipole Antenna, IEEE Transactions on Electromagnetic 
Compatibility,” vol. 37, no. 2 (May), pp. 282–285. 

11. T. Simpson. 2006. “The Scheikunaff-Friis Dipole: the Simplest Antenna of All,” IEEE 
Antennas and Propagation Magazine, vol. 48, no. 4 (August), pp. 48–53. 

12. H. D. Foltz, J. S. McLean, and L. Bodner. 2002."Closed-form Lumper Element Model for 
Folded, Disk Loaded Monopoles." Proceedings of IEEE Antennas and Propagation Society 
International Symposium (pp. 576–579). 16-21 June, San Antonio, TX. 

13. H. R. Stuart. 2009. “Eigenmode Analysis of a Two Element Segmented Capped Monopole 
Antenna,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 10 (October), pp. 2980–
2888. 

14. A. R. Lopez. 2006. “Fundamental Limits of Small Antennas: Validation of Wheeler's 
Formula,” IEEE Antenna and Propagation Magazine, vol. 48, no. 4 (August), pp. 28–35. 

15. The author derived this result from [17]; he is not first to calculate this result. 

16. I. S. Gradshteyn and I. M. Ryzhik. 1980. Table of Integrals, Series, and Products, Corrected 
and Enlarged Edition, Fourth Edition. Academic Press, New York, NY. 

17. G. Arfken. 1970. Mathematical Methods for Physicists, Second Edition. Academic Press, New 
York, NY. 

 



25 

18. A. D. Yaghjian and S. R. Best, Impedance. 2005. “Bandwidth and Q of Antenna,” IEEE 
Transactions on Antennas and Propagation, vol. 53, no. 4 (April), pp. 1298–1324. 

19. H. R. Stuart and A. D. Yaghjian. 2010. "Approaching the Lower Bounds on Q for Electrically 
Small Electric-Dipole Antennas Using High Permeability Shells,” IEEE Transactions on Antennas 
and Propagation, vol. 58, no. 12 (December), pp. 3865–3872. 



 



 

 

5f. WORK UNIT NUMBER 

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-01-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2.  REPORT TYPE 3.  DATES COVERED  (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER 

5e. TASK NUMBER 

6. AUTHORS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
   REPORT NUMBER 

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT 
     NUMBER(S) 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF
     ABSTRACT

18. NUMBER
     OF
     PAGES

19a. NAME OF RESPONSIBLE PERSON

19B. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

 

 
April 2013 Final  

 
 
 
Convergence of the Quasi-static Antenna Design Algorithm 
 

 
 
 
 
 

 
 
T. O. Jones III 
 
 
 

 
 
 
 
 

 
 
SSC Pacific 
5622 Hull Street 
San Diego, CA 92152–5001 

 

TR 2016 

None  
 
 
 

 
Approved for public release.  

This is work of the United States Government and therefore is not copyrighted. This work may be copied and disseminated 
without restriction.  
 

The quasi-static antenna-design algorithm uses multipole basis function to model the general thick top load. A sequence of 
solutions converge in shape and Q. The absolute minimum Q-factor, 1.825, is obtained for a thick disk top load enclosed by a 
sphere. This is significantly smaller than the thin disk top load Q-factor 2.349 and previously derived thick-disk Q-factor 2.078. 
An analytic potential is derived for each multipole basis function. The capacitance and effective height is calculated from the 
potentials on the enclosing sphere. The impedance is computed with Computer Simulation Technology (CST) Microwave Studio. 
The impedance data is numerically fit to a dipole eigenmode equivalent circuit. The radiation resistance does not fit the expected 

2  frequency dependence (effective height).  
The error is an 4  term that is explained by a capacitor approximated for the octupole eigenmode equivalent circuit.  The quasi-
static antenna design algorithm predicts the DC capacitance and the dipole eigenmode effective height. The octupole eigenmode 
increases the radiation resistance. The Q-factor, 1.77, is lower than expected. These results are compared to the spherical cap top 
load. The existence of an 4  limits the accuracy of the theoretical limits in the Q values for antennas. 
 
 

oblate speroidal antenna                 Q-factor                                 multipole basis function 
radiation resistance                         quasi-static antenna               equivalent circuit model 
top load                                           dipole eigenmode                  two-eigenode circuit model 

 
T. O. Jones III

U U U U                          36          (619) 553-7082 



 



INITIAL DISTRIBUTION 

84300 Library (2) 
85300 Archive/Stock (1) 
52260 T. O. Jones III                            (1) 
 

Defense Technical Information Center 
Fort Belvoir, VA 22060–6218 (1)



 



 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Approved for public release. 

 
 
 

 
 

SSC Pacific 
San Diego, CA 92152-5001 

 




